Viewpoint Make your Spins Spin
نویسندگان
چکیده
Many devices used for computing, information storage, and other electronic applications rely on controlled manipulation of the spin angular momentum carried by electrons. Recent advances in spin-dependent phenomena hold promise for future technologies, but often these effects are hard to detect. In Physical Review Letters, Ronghua Liu and co-workers from Emory University in Atlanta, Georgia, combine two spin effects in a design that takes us closer to further insight and more applications of spin-dependent electronic (spintronic) phenomena [1]. One of the spin effects the authors use is spin transfer torque, which occurs when the spins of an electronic charge current rotate the magnetization orientation of a magnetically ordered material. The other effect used is the spin Hall effect, which occurs when electrons move through a conductor under the influence of an applied electric field. This, in turn, splits the electrons into spinup and spin-down populations that move towards opposite sides of the sample. With these effects, Liu et al. were able to detect magnetization dynamics using electrical transport measurements with devices (Fig. 1) that contained just one single ferromagnetic component—Permalloy (a magnetic nickel-iron alloy)—instead of the commonly used twocomponent systems. One of the main advances of this work is that compared to earlier experiments, this detection does not require sophisticated optical spectroscopy or complex device structures, therefore this experimental approach will be accessible to a wide range of research groups. This result should thus provide both a different approach for spintronic devices as well as a better understanding of magnetic dynamics. So, how does one achieve these spin effects? One common way of creating spin transfer torque is by passing a charge current through a ferromagnetic conductor, which induces a net spin polarization. When such a spinpolarized charge current subsequently enters another ferFIG. 1: In the device investigated by Liu et al.[1], a magnetic field H defines the stable equilibrium position of the magnetization M in the ferromagnetic Permalloy layer. The gold contacts enable a high charge-current density I in a small area of the platinum/Permalloy bilayer. The part of the current that flows through the platinum generates a spin current in the platinum (Pt) layer between the gold (Au) and Permalloy (Py) interfaces, with a net spin accumulation developing at the platinum/Permalloy interface. This spin accumulation reduces the magnetic damping in the adjacent ferromagnetic Permalloy layer, which in turn gives rise to spontaneous excitation of magnetization precession (wider cones). The resistivity changes associated with the time varying magnetization subsequently result in voltage changes and concomitant microwave generation at the rf frequencies characteristic for the magnetization precession. (APS/A. Hoffmann)
منابع مشابه
Spins in few-electron quantum dots
The canonical example of a quantum-mechanical two-level system is spin. The simplest picture of spin is a magnetic moment pointing up or down. The full quantum properties of spin become apparent in phenomena such as superpositions of spin states, entanglement among spins, and quantum measurements. Many of these phenomena have been observed in experiments performed on ensembles of particles with...
متن کاملDiscrete Levels Density and Spin Cut off Parameters of the 36Cl, 40K, 60Co and 61Ni Nucleuses
On the bases of Bethe and the constant temperature models, the level density parameters have been calculated for the 36Cl, 40K, 60Co and 61Ni nuclei, nucleuses through fitting the complete level schemes in low excitation energy levels. Both calculations reproduce experimental level densities equally well. Th...
متن کاملConvergence of Cyclic Random Walks with an Application to Cryptanalysis
Imagine that you and some friends are playing a version of roulette. The wheel is divided into 36 sectors, alternately colored red and black. Before spinning the wheel, the contestant chooses a color and then wins or loses depending on whether or not his color comes up. You, the master player, have honed an ability to spin the wheel exactly 3620◦ with high probability. Thus, if the wheel is ini...
متن کاملاثر برهمکنشهای چهار اسپینی برروی سیمای فاز مدل هایزنبرگ J1-J2 پادفرومغناطیس اسپین 3/2 شبکه لانه زنبوری
In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order,...
متن کاملOn Biased Coin Tossing and Cyclic Random Walks
Imagine that you and some friends are playing a version of roulette. The wheel is divided into 36 sectors, alternately colored red and black. Before spinning the wheel, the contestant chooses a color and then wins or loses depending on whether or not his color comes up. You, the master player, have honed an ability to spin the wheel exactly 360◦ with high probability. Thus, if the wheel is init...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013